OSFESOR Code – The Delay Differential Equation Tool “Improving Delay Differential Equations Solver”
نویسندگان
چکیده
منابع مشابه
Periodicity in a System of Differential Equations with Finite Delay
The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.
متن کاملPeriodic solutions of fourth-order delay differential equation
In this paper the periodic solutions of fourth order delay differential equation of the form $ddddot{x}(t)+adddot{x}(t)+f(ddot{x}(t-tau(t)))+g(dot{x}(t-tau(t)))+h({x}(t-tau(t)))=p(t)$ is investigated. Some new positive periodic criteria are given.
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملDelay Differential Equations
where x t ( ) x (t ) and 0. Observe that xt ( ) with 0 represents a portion of the solution trajectory in a recent past. Here, f is a functional operator that takes a time input and a continuous function xt ( ) with 0 and generates a real number (dx (t )/dt ) as its output. A well-known example of a delay differential equation is the Hutchinson equation, or the discrete delay logistic equation,...
متن کاملA numerical method for solving delay-fractional differential and integro-differential equations
This article develops a direct method for solving numerically multi delay-fractional differential and integro-differential equations. A Galerkin method based on Legendre polynomials is implemented for solving linear and nonlinear of equations. The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations. A conver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AL-Rafidain Journal of Computer Sciences and Mathematics
سال: 2004
ISSN: 2311-7990
DOI: 10.33899/csmj.2004.164119